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Abstract

An 1− 1 correspondence mapping λ : V (G)∪E(G) → {1, 2, 3, . . . , p+ q} is a total labeling of a
finite undirected graphGwithout loops and multiple edges, where p = |V (G)| and q = |E(G)|.
A Perfectly Antimagic Total (PAT) labeling is a Totally Antimagic Total (TAT) labeling in which
each vertex weight is also pairwise distinct from each of its edge weights. In this paper, we
introduce a new parameter called strong parity weighted labeling. A TAT labeling is a strong
parity weighted TAT (SPAT) labeling if all the vertex (edge) weights are distinct even (odd)
integers. A graph that admits such labeling is called a strong parityweighted TAT (SPAT) graph.
Our findings established that several well-known families of graphs, including cycles, paths,
stars, complete graphs, bi-stars, and ladders, admit SPAT labeling. We first illustrate the SPAT
labeling for these families utilizing existing methodologies in labeling theory. Furthermore, we
develop novel techniques that extend the analysis to other graph families, determining their
potential to admit SPAT labeling.
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1 Introduction

Graph labeling is awell-established area of graph theory, where labels are assigned to elements
of graphs according to specific rules. In this paper, we focus on undirected, finite graphs with-
out loops or multiple edges, denoted as G = (V (G), E(G)), where p = |V (G)| and q = |E(G)|
represents the order and size of G, respectively. The neighbours of a vertex u ∈ V (G) are de-
noted as N(u). Vertex labeling is used when the domain is only V (G). Labeling is referred to as
edge labeling if the domain is a mere E(G). When the labeling’s domain is V (G) ∪ E(G), it is
referred to as total labeling. A total labeling of graph G is an one to one correspondence function
λ : V (G)∪E(G) → {1, 2, 3, . . . , p+ q}. Such a labeling λ is vertex antimagic total (edge antimagic
total) if all its vertex weights,

wtλ(u) = λ(u) +
∑

v∈N(u)

λ(uv), u ∈ V (G),

(
all its edge weights wtλ(uv) = λ(u) + λ(uv) + λ(v), uv ∈ E(G)

)
are pairwise distinct. If total

labeling is simultaneously vertex antimagic total and edge antimagic total, then it is called TAT
labeling. We monitor the updated version of Gallian’s dynamic survey [5] for new developments
in graph labeling.

The idea of antimagic (edge) labeling, which is fundamentally distinct from TAT labeling,
was first presented by Hartsfield and Ringal in [6]. Exoo et al. [4] suggested the idea of to-
tally magic labeling and also refer to [9]. Researchers studying labeling theory have realized that
TAT labeling is an antipodal variation of totally magic labeling. Miller et al. [10] establishes that
all graphs admit antimagic total, super antimagic total, and repus antimagic total labelings, and
further demonstrates the existence of (c, d)-antimagic total labelings where vertex weights form
an arithmetic progression. Bača et al. [1, 2] and associates developed the idea of TAT labeling
of graphs in 2015, proving both its existence and nonexistence for particular families of graphs.
Ivančo [8] introduces a broad class of totally antimagic total graphs by establishing total labelings
where both vertex and edge weights are pairwise distinct. Hasni et al. [7] studied edge irregu-
lar k-labeling for disjoint unions of cycles and generalized prisms, contributing to graph labeling
techniques. Yoong et al. [12] explored edge irregular reflexive labeling for certain plane graphs,
offering useful insights for antimagic total labeling.

The PAT labeling [11], a further refinement of TAT labeling, addresses whether vertex and
edge weights can be distinct from each other and themselves. Balasundar et al. [3] investigate
PAT labeling and its variant, Strongly Vertex Perfectly Antimagic Total labeling (SVPAT), proving
that not all trees admit SVPAT and that it is exclusively achievable in path graphs. To address
this gap, we introduce a novel concept: Strong Parity Weighted Totally Antimagic Total (SPAT)
labeling. In this labeling, vertex weights are distinct even numbers, and edge weights are different
odd numbers. This builds parity-based labeling, which enhances complexity aswell as uniqueness
in the labeling system.

The introduction of parity-weighted conditions within the TAT framework is a unique aspect
of our research. We enhance the labeling in conventional TAT to provide greater flexibility and
control over label assignments, allowing the investigation of additional classes of graphs that per-
mit such labeling. This method is more rigorous and systematic for graph labeling. It would
facilitate a wider array of applications, including network architecture and cryptography, where
varying even and odd limitations are significant. We also present the robust parity-weighted TAT
for many prominent graph families: cycle, path, star, bi-star, complete, and ladder graphs. These
examples demonstrate that our labeling approach is adaptable and outperforms earlier methods
based on distinctness while also meeting parity criteria.
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The primary contribution of this paper is the introduction of SPAT labeling and the demon-
stration of its applicability to several important graph classes. We present a new approach that
advances the field of graph labeling by providing a method that is both more structured and
adaptable than existing TAT labelings.

2 Main Results

Definition 2.1. A TAT graph is said to be a strong parity weighted TAT graph if the set of vertex weights
consists of the pairwise distinct even integer and the set of edge weights consists of the set of pairwise distinct
odd integers.

Theorem 2.1. Every cycle Cn (n ≥ 3) is strong parity weighted TAT graph.

Proof. Let Cn be a cycle graph that consists of n vertices, where n ≥ 3 and each vertex has degree
2. Define the vertex and edge set as follows,

V (Cn) = {v1, v2, v3, . . . , vn},
E(Cn) = {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {vnv1}.

Define a map λ : V (Cn) ∪ E(Cn) → {1, 2, 3, . . . , 2n} in the following way,

λ(vi) = 2i, 1 ≤ i ≤ n,

λ(vivi+1) = 2n− (2i− 1), 1 ≤ i ≤ n− 1,

= 2(n− i) + 1, 1 ≤ i ≤ n− 1,

λ(v1vn) = 1.

For i = 1,

wtλ(v1) = λ(v1) + λ(v1v2) + λ(v1vn)

= 2 + 2n− 1 + 1

= 2n+ 2.

For i = 2, 3, . . . , n− 1,

wtλ(vi) = λ(vi) +
∑

vj∈N(vi)

λ(vivj)

= λ(vi) + λ(vivi+1) + λ(vi−1vi)

= 4(n+ 1)− 2i.

For i = n,

wtλ(vn) = λ(vn) + λ(vn−1vn) + λ(vnv1)

= 2n+ 2n− (2(n− 1)− 1) + 1

= 2n+ 4.
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For 1 ≤ i ≤ n− 1,

wtλ(vivi+1) = λ(vi) + λ(vivi+1) + λ(vi+1)

= 2i+ 2(n− i) + 1 + 2(i+ 1)

= 2n+ 2i+ 3,

wtλ(vnv1) = λ(vn) + λ(vnv1) + λ(v1)

= 2n+ 1 + 2

= 2n+ 3.
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Figure 1: Cycle C5.

Using this labeling structure, as illustrated in Figure 1, we obtain Cn for n ≥ 3 in the TAT
graph because all of the vertex weights and edge weights are pairwise distinct. The set of pairwise
distinct even integers compensates the set {wtλ(vi) : i = 1, 2, . . . , n} as well. Additionally, the set
of pairwise different odd integers is represented by the set,

{wtλ(vivi+1) : i = 1 ≤ i ≤ n− 1} ∪ wtλ(vnv1).

As a result, the strong parity weighted TAT graph is Cn for n ≥ 3.

Theorem 2.2. Every path Pn, n > 1, n ̸≡ 0( mod 3) is not strong parity weighted TAT graph.

Proof. Let Pn = v1e1v2e2 . . . vn−1en−1vn be a path of length n with n vertices and (n− 1) edges.

Case (i) For n > 1 and n ≡ 2( mod 3), assume Pn is a strong parity weighted TAT graph. Then,
there is a TAT labelingwhere the edgeweights are odd and the vertex weights are even.
The pendant vertices (v1, vn) can only have labels of either both odd or both even, since
each vertex weight is even. If,

[λ(v1), λ(e1), λ(v2)] = [odd, odd, odd], [λ(vn−1), λ(en−1), λ(vn)] = [odd, odd, odd],

and n+1 ≡ 0( mod 3), then n+1 odd labels are needed to assign parity weighted TAT.

However, we can only have n odd labels from the domain set,

{1, 2, . . . , p+ q} = {1, 2, . . . , 2n− 1},
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which leads to a contradiction. Therefore, for n ≡ 2( mod 3) and n more than 1, Pn is
not a strong parity weighted TAT graph. Beginning with,

[λ(v1), λ(e1), λ(v2)] = [even, even, odd],

then, λ(en−1) must be even but λ(vn) can not be label with either odd (or) even. If
λ(vn) = odd, then the edge weight of en−1 is odd but the vertex weight of vn is odd,
which gets a contradiction. If λ(vn) = even, then the vertex weight is even but the edge
weight en−1 is even, we get a contradiction. Hence, the path graph Pn is not strong
parity weighted TAT graph for n ≡ 2( mod 3).

Case (ii) If n > 1, let n ≡ 1( mod 3). Then, we suppose that Pn is a strong parity weighted TAT
graph in the opposite direction. Then, each vertex weight is even under a TAT label-
ing λ, which is present. The labels (λ(v1), λ(e1)) can only receive (odd, odd) or (even,
even) labels because each vertex weight is even. If (λ(v1), λ(e1)) =(odd, odd), then
λ(vn) must meet either of the two conditions (wtλ(vn) = even or wtλ(en−1) = odd).
However, λ(vn) cannot be categorized as either even or odd.

Therefore, there is a contradiction because the TAT labeling λ is not strongly parity
weighted. The required number of odd labels is smaller than the actual number of odd
labels if (λ(v1), λ(e1)) =(even, even). If not, there are more necessary even labels than
there are genuine even labels. We now encounter a contradiction.

Therefore, for n ≡ 1( mod 3) and n more than 1, the path graph Pn is not strongly
parity weighted.

Theorem 2.3. For n ≡ 0( mod 3), the path Pn is strong parity weighted TAT graph.

Proof. Let us start by assigning the labels for λ(v1), λ(e1) and λ(v2) as odd, odd, and odd, respec-
tively. Now, we define a total labeling λ : V (Pn) ∪ E(Pn) → {1, 2, . . . , 2n− 1} as follows,

λ(v1) = 1,

λ(vi) = λ(ei−1) +

⌈
2n− 1

3

⌉
( mod 2n− 1), for i = 2, 3, . . . , n,

λ(e1) = 1 +

⌈
2n− 1

3

⌉
( mod 2n− 1),

λ(ei) = λ(vi) +

⌈
2n− 1

3

⌉
( mod 2n− 1), for i = 2, 3, . . . , n.

Now,

wtλ(v1) = 2 +

⌈
2n− 1

3

⌉
,

wtλ(e1) = 3 + 3

⌈
2n− 1

3

⌉
,

wtλ(vi) = wtλ(ei−1) + 1, for i = 2, 3, . . . , n− 1,

wtλ(ei) = wtλ(vi) + 1, for i = 2, 3, . . . , n− 1,

wtλ(vn) = 2

⌈
2n− 1

3

⌉
+ λ(en−1).
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Figure 2: Path P6.

Following the above labeling, the path graph, as demonstrated in Figure 2. Now, we can easily
check that,

wtλ(v1) < wtλ(vn) < wtλ(e1) < wtλ(v2) < wtλ(e2) < . . . < wtλ(vn−1) < wtλ(en−1).

In the case of n ≡ 0( mod 3),
⌈
2n− 1

3

⌉
is always even. Now, it is simple to verify that all

edge weights and all vertex weights are pairwise distinct odd and even integers, respectively. As
a result, Pn is labeled with a strong parity weighted TAT for n ≡ 0( mod 3).

Thus, when n ≡ 0( mod 3), Pn is a strong parity weighted TAT graph.

Theorem 2.4. The starK1,n is a strong parity weighted TAT graph if and only if n ≡ 2( mod 4).

Proof. Let K1,n be a star graph with n + 1 vertices and n edges, where the central vertex has a
degree of n, while all other vertices have a degree of 1. The vertex and edge set are defined as
follows,

V (K1,n) = {vi : 1 ≤ i ≤ n+ 1},
E(K1,n) = {(v1, vi) = ei−1 : 2 ≤ i ≤ n+ 1},

and v1 is called a central vertex and all other vertices are called pendent vertices.

Now, p = |V (K1,n)| = n+ 1 and q = |E(K1,n)| = n. Hence, p+ q = 2n+ 1.

For the star |V (K1,n)|+ |E(K1,n)| = 2n+ 1 and the set {1, 2, . . . , 2n+ 1} contains n even integers
and n+ 1 odd integers.

As under any strong parity weighted TAT labeling of K1,n the vertex weights must be even
we get that the label of every edge must have the same parity as the label of the incident vertex
of degree 1, (i.e., they are both even or both odd). This implies that n must be even and also the
central vertex must have an odd label.

Moreover, as the weight of the central vertex must be also even and this weight is the sum of n
2

even edge labels, n
2
odd edge labels and label of the central vertex (whichmust be an odd integer)

we get that n
2
must be odd. Thus, when n ̸≡ 2( mod 4) the starK1,n is not strong parity weighted

TAT.

642



G. Suthakaran et al. Malaysian J. Math. Sci. 19(2): 637–651(2025) 637 - 651

b

b

b

b

b

b

b

1

2

3

4

5

6

7

8

9

10

11

1213

Figure 3: Star K1,6.

Conversely, assume n ≡ 2( mod 4).
Define a bijective map λ : V (K1,n) ∪ E(K1,n) → {1, 2, 3, . . . , 2n+ 1} in the following way,

λ(v1) = 2n+ 1,

λ(v2) = 1,

λ(vs) = 4s− 7, 3 ≤ s ≤ n

2
+ 1,

λ(vj) = 2(2n− 2j + 3),
n

2
+ 2 ≤ j ≤ n+ 1,

λ(ei) = 4i− 1, 1 ≤ i ≤ n

2
,

λ(ei) = 4(n+ 1− i),
n

2
+ 1 ≤ i ≤ n.

Next, the vertex weights are given by,

wtλ(v1) =
1

2
(2n2 + 7n+ 2), which is an even.

wtλ(v2) = 4, which is even.
wtλ(vi) = 4i− 7 + 4(i− 1)− 1,

wtλ(vi) = 4(2i− 3), where 3 ≤ i ≤ n

2
+ 1.

Clearly wtλ(vi) is even, for 3 ≤ i ≤ n

2
+ 1.

For n

2
+ 2 ≤ i ≤ n+ 1, we have,

wtλ(vi) = 2(4n− 4i+ 7),
n

2
+ 2 ≤ i ≤ n+ 1.

Clearly, wtλ(vi) is even, for
n

2
+ 2 ≤ i ≤ n+ 1.

Now, we find the edge weights as follows,

wtλ(e1) = 2n+ 5, which is an odd.
wtλ(ei) = 4(i+ 1)− 7 + (4i− 1) + (2n+ 1),

wtλ(ei) = 2(4i+ n)− 3, 2 ≤ i ≤ n

2
.
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Clearly, wtλ(ei) is an odd for 2 ≤ i ≤ n

2
.

For n

2
+ 1 ≤ i ≤ n, we have,

wtλ(ei) = 2(2n− 2(i+ 1) + 3) + 4(n+ 1− i) + 2n+ 1,

wtλ(ei) = 2(5n− 4i) + 7,
n

2
+ 1 ≤ i ≤ n.

Clearly wtλ(ei) is an odd for n

2
+ 1 ≤ i ≤ n.

Using this labeling structure, as shown in Figure 3. Since all the vertex weights are even and all
the edge weights are odd, the star graph K1,n is parity weighted TAT graph for n ≡ 2( mod 4)
and n > 1.

Theorem 2.5. For any positive integer k, the complete graph K2k is not a strong parity weighted TAT
graph.

Proof. Suppose that the complete graphK2k is strong parityweighted TAT for some k ∈ Z+. Then,
there exists a TAT labeling λ : V (K2k) ∪ E(K2k) → {1, 2, 3, . . . , k(2k + 1)} such that each vertex
weight is even and each weight is odd.

Let, V (Kn) = {v1, v2, v3, . . . , vn} and E(Kn) = {vivj : i = 1, 2, . . . , n, j = 1, 2, . . . , n, i ̸= j}.
Fix v1 so that λ(v1) is an odd vertex. There must be a 2l + 1 incident edges of v1 that receive the
distinct odd labels to comply with the vertex weight requirement. Finally, the distinct even labels
must be applied to the remaining n − 2l − 2 incident edges. Since the TAT labeling λ is strongly
parity weighted, both the vertex weight and edge weight properties must be satisfied. Now, the
incident edges of the vertices with odd labels must receive n − 2l − 2 even labels and 2l + 2 odd
labels, respectively. However, the vertices which are having even labels and their incident edges
must receive the n− 2l − 3 number of odd labels and 2l + 3 number of even labels,

n− 2l − 3 = 2k − 2l − 3,

= 2(k − l)− 3, which is always an odd.

We have an odd number of odd labels and an odd number of even labels at the vertices of an even
label and its incident edges. Therefore, not all of the vertices with even labels satisfy the vertex
weight property. This runs counter to the TAT labeling’s significant parity weight. Therefore, for
any k ∈ Z+,K2k is not a strong parity weighted TAT graph.

Theorem 2.6. The bi-star graph Bn,n is not a strong parity weighted TAT graph for all n ≥ 1.

Proof. Let, V (Bn,n) = {u, u1, u2, . . . , un, v, v1, v2, . . . , vn} and
E(Bn,n) = {e1 : e1 = uv} ∪ {ei+1 : ei+1 = uui, 1 ≤ i ≤ n} ∪ {ei+n+1 : ei+n+1 = vvi, 1 ≤ i ≤ n},
be the vertex and edge set of bi-star graph, respectively. The order and size of a bi-star graph is
2(n+ 1) and 2n+ 1, respectively and S = {1, 2, 3, . . . , p+ q} = {1, 2, 3, . . . , 4n+ 3}.

Assume that Bn,n is a parity weighted TAT graph for all n ≥ 1. Then, there is a TAT labeling
λ : V (Bn,n)

⋃
E(Bn,n) → S such that each vertex weight is even and each edge weight is odd.

Without loss of generality, one can assume that λ(u)+λ(v)= odd (or) even. If λ(u)+λ(v) = odd,
then λ(u) =odd, λ(v) =even (or) λ(u) = even, λ(v) =odd, only possible to discuss.

In this case, without loss of generality, we may assume λ(u) = odd, λ(v) = even only. If
λ(u) + λ(v) = even, then either λ(u) and λ(v) are odd (or) λ(u) and λ(v) are even only possible.
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Case (i): When n is odd. We assume that n = 2k + 1 for some k ∈ Z+.

When λ(u) is odd and λ(v) is even, λ(e1)must also be odd. Given that λ(u) is odd and
λ(e1) is even, it takes an odd number of odd labels to label the edges λ(ei) for the for-
mula 2 ≤ i ≤ 2k+2. Let us take (2s+1) number of λ(ei)’s are odd, the remaining 2(k−s)
number of λ(ei)’s are even. We note that 1 ≤ 2s+1 ≤ 2k+1 and 1 ≤ 2(k− s) ≤ 2k+1.
Hence, its 2(k− s) pendant vertices receives even labels. Since λ(u) is odd and (2s+1)
number of λ(ei) are odd, then its pendant vertex labels λ(ui)must be odd.

Since λ(v) is even and λ(e1) is also even, there are only 2t incident edges that receive
odd labels for some t ∈ Z+. We note that 1 ≤ 2t ≤ 2k+1. Now, the remaining labels of
2(k− t)+1 edges incident with v are even. Hence, the 2t number of its pendant vertices
couldn’t receive either odd or even. Moreover, 2(k− t) + 1 vertices also don’t get either
odd or even. Hence, we get a contradiction.

If both λ(u) and λ(v) are odd, then λ(e1) must be odd. Since λ(u), λ(v), λ(e1) are odd,
there must be a 2l number of edge labels λ(ei) which are incident with u are odd for
some k ∈ Z+ and 2 ≤ i ≤ n + 1. The remaining 2(k − l) + 1 incident edges f(ei) are
even for 2 ≤ i ≤ n + 1. Now, the only possibility of 2l pendant vertex labelsf(ui) are
odd. But, the remaining 2(k − l) + 1 pendant vertex labels λ(ui) are even. Since λ(v)
and λ(e1) are odd, there are 2s edge labels are odd and its 2s pendant vertex labels are
odd.

Similarly, we have 2(k − s) + 1 edge labels are even and its 2(k − s) + 1 pendant vertex
labels are even. Hence, the total number of required odd labels to assign = 4(l+ s) + 2
and the total number of required even labels to assign 0 = 4(2k − l − s) + 4. But from
the range set S, the total number of actual odd labels available = 4(k + 1) and the total
number of actual even labels available = 4k + 3. Since 4k + 3 ̸= 4(2k − l − s) + 4, the
number of actual even labels and the number of available even labels are different, we
get a contradiction to the existence of λ. If λ(u) and λ(v) are even, then e1 must receive
an odd label. Since λ(u) is even and λ(ei) is odd, we have (2w + 1) incident edges of u
other than e1 receive odd labels and their (2w + 1) pendant vertices couldn’t get either
by even or odd labels, get a contradiction.

Case (ii): Whenever n is even. For somem ∈ Z+, we consider n = 2m.

Similar justifications are mentioned in Case (i). When λ(u) is odd and λ(u) is even,
λ(e1) must also be odd. The incident edges of u must receive (2r + 1) odd labels be-
cause λ(u) is odd, and its corresponding (2r+1) pendant vertices must likewise receive
odd labels.

Now, the remaining incident 2(m−r)+1 edges ofu receive even labels and its 2(m−r)+1
pendant vertices must have even labels. Since λ(v) is even and λ(e1) is even, 2x incident
edges of v must have odd labels and its 2x pendant vertices can’t receive either odd la-
bels or even labels.

Otherwise, the edge weight property will be affected if the 2x pendant vertices are odd.
Vertex weight will be affected if 2x pendant vertices receive equal input. As a result,
we lack such parity weighted TAT labeling assignment results in a discrepancy. The
evidence is now complete. If λ(u) and λ(v) are odd, then just the odd label should be
applied to λ(e1). Due to the odd nature of λ(u) and λ(e1), we are required to have 2y
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odd incident edges for some y ∈ Z+. Additionally, their incident pendant vertices get
2y odd labels. The remaining 2(m− y) incident edges now acquire even labels, and the
2(m− y) pendant vertices now receive even labels. Given that λ(v) and λ(e1) are odd,
we must also have 2d odd incident edges for any d ∈ Z+. Additionally, the pendant
vertex’s second number receives an odd label exclusively. The remaining 2(m − d) in-
cident edges of v are now even, and its pendant vertices (2m− d) only receive an even
label.

The total number of odd labels that must be assigned is 4(y+d)+3, and the total num-
ber of even labels that must be assigned is 4(2m− y− d). However, the total number of
possible odd labels in the range set S is equal to 4m+ 2, and the total number of avail-
able even labels is equal to 4m+1. We encounter a contradiction since the total number
of necessary odd labels does not match the total number of available odd labels. If λ(u)
and λ(v) are even, then λ(e1) must be odd only. Since λ(u) and λ(e1) are in different
parity, we have (2z + 1) number of incident edges of u are odd, for some z ∈ Z+. Also,
their incident (2z + 1) pendant vertices labels can’t be assigned by either odd or even.
If so, the vertex weight (or) edge weight property fails.

From all the above cases, we conclude that the bistar graphBn,n is not a parityweighted
TAT graph for any n ≥ 1.

Theorem 2.7. The ladder graphLn is a strong parity weighted TAT graph only when n = 2, 3, 5, 6, 7, 8, 10
and 39.

Proof. Consider the ladder graph Ln for n ≥ 2. Let V (Ln) = {ui, vi : i = 1, 2, 3, . . . , n} and
E(Ln) = {uiui+1 : i = 1, 2, 3, . . . , n− 1} ∪ {vivi+1 : i = 1, 2, 3, . . . , n− 1} ∪ {uivi|i = 1, 2, 3, . . . , n}.
Now, p = |V (Ln)| = 2n, q = |E(Ln)| = 3n − 2 and p + q = 5n − 2. Let o represent the odd label
and e represent the even label.

Let S = {1, 2, 3, . . . , p+ q} = {1, 2, 3, . . . , 5n− 2}. Actual number of odd labels available in the
set S is,

A0 =

⌈
5n− 2

2

⌉
=


5n− 1

2
, if n is odd.

5n− 2

2
, if n is even.

Actual number of even labels available in the set S is,

Ae =

⌊
5n− 2

2

⌋
=


5n− 3

2
, if n is odd.

5n− 2

2
, if n is even.

We note that, A0 = Ae =
5n− 2

2
if n is even, but A0 > Ae if n is odd.

Consider the following possible cases with a total labeling λ : V (Ln) ∪ E(Ln) → S,

Case (i): Suppose we consider the scheme [λ(u1), λ(u1u2), λ(u2)] = [e, o, e]. Then, λ(u1v1) = o,
λ(v1) = e. [e, o, e] patterns repeats in (2n− 1) entries both in top and bottom of Ln. In
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this way, we start [λ(u1), λ(u1u2), λ(u2)] = [e, o, e] but
[λ(un−1), λ(un−1un), λ(un)] = [e, o, e] in the top of Ln.

Similarly, in the bottom of the Ln, we start [e, o, e] for [λ(v1), λ(v1v2), λ(v2)] and ends
with [e, o, e] for [λ(vn−1), λ(vn−1vn), λ(vn)]. On the other hand, all λ(uivi) must be an
odd label for all i = 1, 2, 3, . . . , n. Moreover, we have (2n − 1) entries (vertices and
edges) on the top ofLn, and also (2n−1) entries on the bottom ofLn. But, in themiddle,
we have n entries. Now, the required number of odd labels present in the scheme [e, o, e]
is given by,

R0 =
1

3
(2n− 1) + n+

1

3
(2n− 1) =

1

3
[7n− 2].

The required number of even labels present in the scheme [e, o, e] is given by,

Re =
2

3
(2n− 1) +

2

3
(2n− 1) =

1

3
(8n− 4).

This implies,

Ro +Re = 5n− 2,

Ro +Re = p+ q = Ao +Ae.

Now, if n is odd, then λ is parity weighted TAT labeling only when Ao = Ro and
Ae = Re. By solving the conditions Ao = Ro and Ae = Re, we get n = −1. Since
n is not a positive integer, we do not need to consider this case. If n is even, then the
conditions Ao = Ro and Ae = Re are satisfied only when n = 2. Hence, [e, o, e] scheme
is valid only for L2.

Case (ii): Suppose we consider the scheme starts with [λ(u1), λ(u1u2), λ(u2)] = [e, o, e] and it re-
peats in (2n− 3) entries both in top and bottom of Ln and ends with [e, o] for
[λ(un−1un), λ(un)].

Similarly, at the bottom starts with [e, o, e] for [λ(v1), λ(v1v2), λ(v2)] and ends with [e, o]
for [λ(vn−1vn), λ(vn)]. But, all the labels in the middle are odd. Now,

R0 =
1

3
(2n− 3) + 2 +

1

3
(2n− 3) + n =

7n

3
, and

Re = 2

[
2

3
(2n− 3) + 1

]
=

2

3
(4n− 3).

If n is odd, then λ becomes parity weighted TAT labeling only when Ao = Ro and
Ae = Re, this implies we get n = 3. Hence, this scheme is valid only for L3. If n is even,
then λ is parity weighted TAT labeling only when Ao = Ro and Ae = Re. That is, λ is
parity weighted TAT labeling only when n = 6. This scheme is valid only for L6. Hence
this scheme is valid only for L6.

Case (iii): If we start a scheme with [e, o, e] and it repeats in (2n − 2) entries both at the top and
bottom of Ln from left to right. The scheme ends with e only for vn and un as well. All
the middle edges receive o only. Now,

Ro =
2

3
(2n− 2) + n =

1

3
[7n− 4], and

Re = 2

[
2

3
(2n− 2) + 1

]
=

2

3
(4n− 1).
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If n is odd, then the conditions Ao = Ro and Ae = Re are satisfied only when n = −5.
Hence, this case of scheme is not possible for any Ln if n is odd. If n is even, then the
conditions Ao = Ro and Ae = Re are valid only when n = −2. Since n is a negative
integer, this scheme is not valid for any Ln, if n is even.

Case (iv): If the pattern starts with [o, e, e] and it repeats in (2n−2) entries in both top and bottom
of Ln, and the pattern ends with only one o in both top and bottom. All the remaining
middle edges receive o only at n times. Now,

Ro =
2

3
(2n− 2) + 2 + n =

1

3
[7n+ 2], and

Re = 2

(
2

3
(2n− 2)

)
=

8

3
[n− 1].

If n is odd, then the conditions for λ to be a strong parity weighted TAT labeling are
given by Ao = Ro and Ae = Re. By solving the above two conditions, we get n = 7.

Hence, this scheme is valid only for L7. If n is even, then the conditions Ao = Ro and
Ae = Re for λ to be a strong weighted TAT labeling are valid only when n = 10. Hence,
this scheme is valid only for L10.

Case (v): If the pattern starts with [o, e, e] and it repeats in (2n − 3) entries both at the top and
bottom of Ln respectively. It ends with [o, e] for [un−1un, un] and [vn−1vn, vn]. All other
middle n edges receive o only. Now,

R0 = 2

(
1

3
(2n− 3) + 1

)
+ n =

7n

3
, and

Re = 2

(
2

3
(2n− 3) + 1

)
=

2

3
(4n− 3).

If n is odd, then the conditions of strong parity weighted TAT labeling Ao = Ro and
Ae = Re are satisfied only when n = 3. Hence, this scheme is valid only for L3. If n is
even, then the conditions Ao = Ro and Ae = Re are valid only when n=6. Hence, this
scheme is valid only for L6.

Case (vi): If the pattern starts with [o, e, e] and it repeats in (2n − 1) entries both at the top and
in the bottom of Ln respectively from left to right. All the remaining middle n− edges
receive o only. Now,

R0 = 2

(
1

3
(2n− 1) + 1

)
+ n =

1

3
(7n− 2), and

Re = 2

(
2

3
(2n− 1)

)
=

4

3
(2n− 1).

If n is odd, then the required conditions for λ to be a strong parity weighted TAT label-
ing are Ao = Ro and Ae = Re. After solving the above two conditions, we get n = −1.
As n is a negative integer, this scheme is not possible for Ln if n is odd. If n is even, then
the condition Ao = Ro and Ae = Re are satisfied only when n = 2. Hence, this scheme
is valid only for L2.

Case (vii): If the scheme starts with [e, e] on the top and [o, o] on the bottom but in the middle u1v1
receives e all others are o. The remaining entries at the top and bottom respectively
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receive the pattern [o, e, e] and it repeats in (2n − 4) entries, the scheme ends with o
only on both top and bottom respectively. Now,

R0 = 2 + 2

(
1

3
(2n− 4) + 1

)
+ (n− 1) =

1

3
(7n+ 1), and

Re = 2 + 2

(
2

3
(2n− 4)

)
+ 1 =

1

3
(8n− 7).

If n is odd, then the conditions Ao = Ro and Ae = Re are satisfied only when n = 5.
Hence, this scheme is valid only for L5. If n is even, then the conditions Ao = Ro and
Ae = Re are satisfied only when n = 8 Hence, this scheme is valid only for L8.

Case (viii): If the pattern starts with [o, o, o, o, o, e, e, e, o, e, e] and it repeats for (2n − 1) entries on
the top and the reversal of the above pattern [e, e, o, e, e, e, o, o, o, o, o] starts and repeats
in the bottom for (2n−1) entries. In the middle edge, we have the pattern [e, o, e, e, o, e]
and it repeats for n entries. Now,

R0 = 2

(
6

11
(2n− 1)

)
+

2

6
n =

1

33
(83n− 36), and

Re = 2

(
5

11
(2n− 1)

)
+

4

6
n =

1

33
(82n− 30).

If n is odd, then by setting Ao = Ro and Ae = Re we get n = 39. Hence, this scheme is
valid only for L39. If n is even, then the conditions Ao = Ro and Ae = Re are satisfied
only when n = 6. Hence, this scheme is valid for L6.

Case (ix): If the scheme starts with [o, o, o, o, o, e, e, e, o, e, e] at the top and it repeats for
(2n−10) entries and ends with [o, o, o, o, o, e, e, e, o] on the top. Similarly, at the bottom,
the scheme starts with [e, e, o, e, e, e, o, o, o, o, o] and it repeats for (2n−10) entries at the
bottom and the scheme ends with [e, e, o, e, e, e, o, o, o] at the bottom. In the middle, the
scheme starts with [e, o, e] and it repeats in (n − 2) entries and ends with the scheme
[e, o]. Now,

R0 = 2

(
6

11
(2n− 10)

)
+ 6 + 4 +

2

6
(n− 2) + 1 =

1

33
(83n− 19), and

Re = 2

(
5

11
(2n− 10)

)
+ 3 + 5 +

2

3
(n− 2) + 1 =

1

33
(82n− 47).

If n is odd, then the condition Ao = Ro and Ae = Re are satisfied only when n = 5.
Hence, this scheme is valid only for L5. If n is even, then Ao = Ro and Ae = Re are
satisfied only when n = −28. Since n is a negative integer, this scheme is not possible
for any Ln when n is even.

Case (x): If the scheme starts with [o, o, o, o, o, e, e, e, o, e, e] at the top and it repeats for (2n − 6)
entries and ends with [o, o, o, o, o] at the top. In the bottom, the scheme starts with
[e, e, o, e, e, e, o, o, o, o, o] and it repeats for (2n− 6) entries and ends with [e, e, o, e, e]. In
the middle, the scheme starts with [e, o, e] and it repeats in n entries. Now,

R0 = 2

(
6

11
(2n− 6)

)
+ 5 + 1 +

n

3
=

1

33
(83n− 18), and

Re = 2

(
5

11
(2n− 6)

)
+ 4 +

2

3
(n) =

1

33
(83n− 48).
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If n is odd, then Ao = Ro and Ae = Re are valid only when n = 3. Hence, this scheme
is valid only for L3. If n is even, then the conditions Ao = Ro and Ae = Re are satisfied
only when n = −30. Since n is a negative integer, this scheme does not exist for any Ln

if n is even.

Case (xi): If we choose a different scheme than the one we previously described, then the initial
fact that Ao = Ro or Ae = Re is contradicted. In certain additional situations, the defi-
nitions of even vertexweight and odd edgeweight prevented us from assigning o and e.

The only instances where Ln is a strong parity weighted TAT graph are those where
n = 2, 3, 5, 6, 7, 8, 10 and 39.

3 Conclusions

We present a new type of labeling known as SPAT labeling, which offers a unique perspective
on distinct parity conditions in graph labelings. Here we prove that cycle, path, star, bistar, com-
plete, and ladder graphs admit such labeling. Our methodology is based on new combinatorial
strategies that enforce the parity conditions while making sure all the vertex and edge weights are
pairwise distinct and totally antimagic.

Strong parity-weighted labeling is one of the main consequences of these results. These label-
ings prove to be highly valuable, particularly in understanding the intricate relationships between
graph structures and labeling constraints. Apart from the value of applying parity-weighted tech-
niques, this paper contributes to a growing theory on antimagic labelings, which shows promise
in solving more complex labeling problems of graph types.

Adding SPAT labeling to complex graph structures like bipartite graphs, hypercubes, and
Cartesian products of graphs is an exciting area for future research. Another area of research
involves examining the algorithmic complexity involved in determining whether any given graph
is suitable for such labeling. Such a study could delve deeper into the structural properties of la-
beled graphs, providing a deeper understanding of their structures. It could also explore further
relationships between parity-weighted labelings and graph-theoretic invariants like connectivity
or chromatic number.
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